Guide to intelligent data analysis : how to intelligently make sense of real data / Michael R. Berthold ... [et al.]
Tipo de material: TextoSeries Texts in computer scienceDetalles de publicación: New York : Springer, ©2010Descripción: xiii, 394 páginas. : ilustraciones, graficas. ; 24 x 17 centímetrosTipo de contenido:- texto
- sin medio
- volumen
- 1848822596
- 9781848822597
- QA 276 G83
Tipo de ítem | Biblioteca actual | Biblioteca de origen | Colección | Signatura topográfica | Copia número | Estado | Notas | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|---|---|---|
Libros para consulta en sala | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | COLECCIÓN RESERVA | QA 276 G83 (Navegar estantería(Abre debajo)) | 1 | No para préstamo (Préstamo interno) | Ingeniería Telemática | 029122 | |||
Libros | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | Colección General | QA 276 G83 (Navegar estantería(Abre debajo)) | 2 | Disponible | Ingeniería Telemática | 038233 |
Navegando Biblioteca Antonio Enriquez Savignac estanterías, Colección: Colección General Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA276.A2 I5.5 Métodos estadísticos : un enfoque interdisciplinario / | QA276.A2 W32 Estadistica matemática con aplicaciones/ | QA276.A2 W32 Estadistica matemática con aplicaciones/ | QA 276 G83 Guide to intelligent data analysis : how to intelligently make sense of real data / | QA 276 M53 2010 Introducción a la probabilidad y estadística / | QA 276 W3218 2010 Estadística matemática con aplicaciones / | QA 276 W3218 2010 Estadística matemática con aplicaciones / |
Incluye referencias bibliográficas e índice
Introduction -- Motivation -- The analysis process -- Methods, tasks, and tools -- How to read this book -- Practical data analysis : an example -- The setup -- Data understanding and pattern finding -- Explanation finding -- Predicting the future -- Concluding remarks -- Project understanding -- Determine the project objective -- Assess the situation -- Determine analysis goals -- Further reading -- Data understanding -- Attribute understanding -- Data quality -- Data visualization -- Correlation analysis -- Outlier detection -- Missing values -- A checklist for data understanding -- Data understanding in practice -- Principles of modeling -- Model classes -- Fitting criteria and score functions -- Algorithms for model fitting -- Types of errors -- Model validation -- Model errors and validation in practice -- Further reading -- Data preparation -- Select data -- Clean data -- Construct data -- Complex data types -- Data integration -- Data preparation in practice -- Finding patterns -- Hierarchical clustering -- Notion of (Dis-) Similarity -- Prototype- and model-based clustering -- Density-based clustering -- Self-organizing maps -- Frequent pattern mining and association rules -- Deviation analysis -- Finding patterns in practice -- Further reading -- Finding explanations -- Decision trees -- Bayes classifiers -- Regression -- Rule learning -- Finding explanations in practice -- Further reading -- Finding predictors -- Nearest-neighbor predictors -- Artifical neural networks -- Support vector machines -- Ensemble methods -- Finding predictors in practice -- Evaluation and deployment -- Evaluation -- Deployment and monitoring -- Statistics -- Terms and notation -- Descriptive statistics -- Probability theory -- Inferential statistics -- The R project -- KNIME
PIT
NUEVOSTELEMAT