PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de Google Jackets

Data analysis with open source tools / Philipp K. Janert

Por: Tipo de material: TextoTextoDetalles de publicación: United States of America : O'Reilly, ©2011Edición: 1a ediciónDescripción: xviii, 509 páginas : ilustraciones ; 24 x 18 centímetrosTipo de contenido:
  • texto
Tipo de medio:
  • sin medio
Tipo de soporte:
  • volumen
ISBN:
  • 9780596802356
Tema(s): Clasificación LoC:
  • QA76 .9 .D343  J33 2011
Contenidos:
1 Introduction - Part I. Graphics: Looking at Data -- 2 A Single Variable: Shape and Distribution -- 3 Two Variables: Establishing Relationships -- 4 Time As a Variable: Time-Series Analysis -- 5 More Than Two Variables: Graphical Multivariate Analysis -- 6 Intermezzo: A Data Analysis Session - Part II -- 7 Guesstimation and the Back of the Envelope -- 8 Models from Scaling Arguments -- 9 Arguments from Probability Models -- 10 What You Really Need to Know About Classical Statistics -- 11 Intermezzo: Mythbusting-Bigfoot, Least Squares, and All That - Part III. Computation: Mining Data -- 12 Simulations -- 13 Finding Clusters -- 14 Seeing the Forest for the Trees: Finding Important Attributes -- 15 Intermezzo: When More Is Different - Part IV. Applications: Using Data -- 16 Reporting, Business Intelligence, and Dashboards -- 17 Financial Calculations and Modeling -- 18 Predictive Analytics -- 19 Epilogue: Facts Are Not Reality
Resumen: " Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications." -- P. [4]
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA76 .9 .D343 J33 2011 (Navegar estantería(Abre debajo)) 1 No para préstamo 036643
Total de reservas: 0

En la cubierta: "A hands-on guide for programmers and data scientists"

1 Introduction - Part I. Graphics: Looking at Data -- 2 A Single Variable: Shape and Distribution -- 3 Two Variables: Establishing Relationships -- 4 Time As a Variable: Time-Series Analysis -- 5 More Than Two Variables: Graphical Multivariate Analysis -- 6 Intermezzo: A Data Analysis Session - Part II -- 7 Guesstimation and the Back of the Envelope -- 8 Models from Scaling Arguments -- 9 Arguments from Probability Models -- 10 What You Really Need to Know About Classical Statistics -- 11 Intermezzo: Mythbusting-Bigfoot, Least Squares, and All That - Part III. Computation: Mining Data -- 12 Simulations -- 13 Finding Clusters -- 14 Seeing the Forest for the Trees: Finding Important Attributes -- 15 Intermezzo: When More Is Different - Part IV. Applications: Using Data -- 16 Reporting, Business Intelligence, and Dashboards -- 17 Financial Calculations and Modeling -- 18 Predictive Analytics -- 19 Epilogue: Facts Are Not Reality

" Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications." -- P. [4]

PIT

NUEVOSTELEMAT

  • Universidad del Caribe
  • Con tecnología Koha