Machine learning for hackers / Drew Conway and John Myles White.
Tipo de material: TextoDetalles de publicación: Sebastopol, CA : O'Reilly Media, ©2012.Edición: 1a ediciónDescripción: xiii, 303 páginas : ilustraciones, gráficas, tablas. ; 24 x 18 centímetrosTipo de contenido:- texto
- sin medio
- volumen
- 9781449303716
- 1449303714
- QA 76 .9 .A43 C674 2012
Tipo de ítem | Biblioteca actual | Biblioteca de origen | Colección | Signatura topográfica | Copia número | Estado | Notas | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|---|---|---|
Libros para consulta en sala | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | COLECCIÓN RESERVA | QA 76 .9 .A43 C674 2012 (Navegar estantería(Abre debajo)) | 1 | No para préstamo (Préstamo interno) | Ingeniería Telemática | 038237 | |||
Libros | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | Colección General | QA 76 .9 .A43 C674 2012 (Navegar estantería(Abre debajo)) | 2 | Disponible | Ingeniería Telemática | 038238 |
"Case studies and algorithms to get you started"--En la Portada.
Incluye: referencias bibliográficas (páginas 293-294) e índice.
Machine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration versus Confirmation -- What Is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Visualizing the Relationships Between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority.
Contents note continued: Priority Features of Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker -- 5. Regression: Predicting Page Views -- Introducing Regression -- The Baseline Model -- Regression Using Dummy Variables -- Linear Regression in a Nutshell -- Predicting Web Traffic -- Defining Correlation -- 6. Regularization: Text Regression -- Nonlinear Relationships Between Columns: Beyond Straight Lines -- Introducing Polynomial Regression -- Methods for Preventing Overfitting -- Preventing Overfitting with Regularization -- Text Regression -- Logistic Regression to the Rescue -- 7. Optimization: Breaking Codes -- Introduction to Optimization -- Ridge Regression -- Code Breaking as Optimization -- 8. PCA: Building a Market Index -- Unsupervised Learning -- 9. MDS: Visually Exploring US Senator Similarity.
Contents note continued: Clustering Based on Similarity -- A Brief Introduction to Distance Metrics and Multidirectional Scaling -- How Do US Senators Cluster? -- Analyzing US Senator Roll Call Data (101st--111th Congresses) -- 10. kNN: Recommendation Systems -- The k-Nearest Neighbors Algorithm -- R Package Installation Data -- 11. Analyzing Social Graphs -- Social Network Analysis -- Thinking Graphically -- Hacking Twitter Social Graph Data -- Working with the Google SocialGraph API -- Analyzing Twitter Networks -- Local Community Structure -- Visualizing the Clustered Twitter Network with Gephi -- Building Your Own "Who to Follow" Engine -- 12. Model Comparison -- SVMs: The Support Vector Machine -- Comparing Algorithms.
PIT
NUEVOSTELEMAT