PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de Google Jackets

Data warehouse design : modern principles and methodologies / Matteo Golfarelli, Stefano Rizzi ; traducción de Claudio Pagliarani.

Por: Colaborador(es): Tipo de material: TextoTextoIdioma: Inglés Lenguaje original: Italiano Productor: New York : Distribuidor: McGraw-Hill, Fecha de copyright: ©2009Edición: 1a ediciónDescripción: xxi, 458 páginas : ilustraciones ; 24 x 17 cmTipo de contenido:
  • texto
Tipo de medio:
  • sin medio
Tipo de soporte:
  • volumen
ISBN:
  • 9780071610391
Otro título:
  • Data warehouse
Tema(s): Clasificación LoC:
  • QA 76 .9 .D37 G62 2009
Contenidos:
Introduction to Data Warehousing -- Data Warehouse System Lifecycle -- Analysis and reconciliation of Data Sources -- User requeriments analysis -- Conceptual modeling -- Conceptuaol design -- Workload and data volume -- Logical modeling -- Logical design -- Data-staging design -- Indexes for the Data Warehouse -- Physical design -- Data Warehouse project documentation -- A case study -- Business intelligence: Beyond the Data Warehouse
Resumen: "Plan, Design, and Document High-Performance Data Warehouses. Set up a reliable, secure decision-support infrastructure using the cuttingedge techniques contained in this comprehensive volume. Data Warehouse Design: Modern Principles and Methodologies presents a practical design approach based on solid software engineering principles. Find out how to interview end users, construct expressive conceptual schemata and translate them into relational schemata, and design state-of-the-art ETL procedures. You will also learn how to integrate heterogeneous data sources, implement star and snowflake schemata, manage dynamic and irregular hierarchies, and fine-tune performance by materializing and fragmenting views. Work with data- and requirement-driven methodological approaches Create a reconciled database to boost data mart architecture Capture and expressively represent end-user requirements Build a conceptual data mart schema using the Dimensional fact Model Estimate data mart volume and workload Improve performance using advanced logical modeling techniques Extract, transform, cleanse, and load data from operational sources Use sophisticated indexing techniques to optimize query execution plans Comprehensively document data warehouse projects Discover innovative business intelligence techniques." -- P. [4]
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA 76 .9 .D37 G62 2009 (Navegar estantería(Abre debajo)) 1 No para préstamo Ingeniería en Datos e Inteligencia Organizacional 040446
Total de reservas: 0

Incluye bibliografía: páginas 429-443

Introduction to Data Warehousing -- Data Warehouse System Lifecycle -- Analysis and reconciliation of Data Sources -- User requeriments analysis -- Conceptual modeling -- Conceptuaol design -- Workload and data volume -- Logical modeling -- Logical design -- Data-staging design -- Indexes for the Data Warehouse -- Physical design -- Data Warehouse project documentation -- A case study -- Business intelligence: Beyond the Data Warehouse

"Plan, Design, and Document High-Performance Data Warehouses. Set up a reliable, secure decision-support infrastructure using the cuttingedge techniques contained in this comprehensive volume. Data Warehouse Design: Modern Principles and Methodologies presents a practical design approach based on solid software engineering principles. Find out how to interview end users, construct expressive conceptual schemata and translate them into relational schemata, and design state-of-the-art ETL procedures. You will also learn how to integrate heterogeneous data sources, implement star and snowflake schemata, manage dynamic and irregular hierarchies, and fine-tune performance by materializing and fragmenting views. Work with data- and requirement-driven methodological approaches Create a reconciled database to boost data mart architecture Capture and expressively represent end-user requirements Build a conceptual data mart schema using the Dimensional fact Model Estimate data mart volume and workload Improve performance using advanced logical modeling techniques Extract, transform, cleanse, and load data from operational sources Use sophisticated indexing techniques to optimize query execution plans Comprehensively document data warehouse projects Discover innovative business intelligence techniques." -- P. [4]

Ingeniería de Datos e Intelegiencia

NUEVOSDATOS

  • Universidad del Caribe
  • Con tecnología Koha