PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de Google Jackets

Data mining : practical machine learning tools and techniques / Ian H. Witten, Eibe Frank, Mark A. Hall, Christopher J. Pal.

Por: Colaborador(es): Tipo de material: TextoTextoProductor: Amsterdam : Distribuidor: Elsevier, Fecha de copyright: ©2017Edición: 4a ediciónDescripción: xxxii, 621 páginas : ilustraciones, gráficas ; 24 x 19 cmTipo de contenido:
  • texto
Tipo de medio:
  • sin medio
Tipo de soporte:
  • volumen
ISBN:
  • 9780128042915
Tema(s): Clasificación LoC:
  • QA 76 .9 .D343 W82 2017
Contenidos:
Part I: Introduction to data mining -- Chapter 1. What's it all about? -- Chapter 2. Input: Concepts, instances, attributes -- Chapter 3. Output: Knowledge representation -- Chapter 4. Algorithms: The basic methods -- Chapter 5. Credibility: Evaluating what's been learned -- Part II: More advanced machine learning schemes -- Chapter 6. Trees and rules -- Chapter 7. Extending instance-based and linear models -- Chapter 8. Data transformations -- Chapter 9. Probabilistic methods -- Chapter 10. Deep learning -- Chapter 11. Beyond supervised and unsupervised learning -- Chapter 12. Ensemble learning -- Chapter 13. Moving on: applications and beyond
Resumen: "Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research." -- P. web editorial
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA 76 .9 .D343 W82 2017 (Navegar estantería(Abre debajo)) 1 No para préstamo Ingeniería en Datos e Inteligencia Organizacional 040445
Total de reservas: 0

Incluye referencias bibliográficas: páginas 573-600

Part I: Introduction to data mining -- Chapter 1. What's it all about? -- Chapter 2. Input: Concepts, instances, attributes -- Chapter 3. Output: Knowledge representation -- Chapter 4. Algorithms: The basic methods -- Chapter 5. Credibility: Evaluating what's been learned -- Part II: More advanced machine learning schemes -- Chapter 6. Trees and rules -- Chapter 7. Extending instance-based and linear models -- Chapter 8. Data transformations -- Chapter 9. Probabilistic methods -- Chapter 10. Deep learning -- Chapter 11. Beyond supervised and unsupervised learning -- Chapter 12. Ensemble learning -- Chapter 13. Moving on: applications and beyond

"Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research." -- P. web editorial

Ingeniería de Datos e Intelegiencia

NUEVOSDATOS

  • Universidad del Caribe
  • Con tecnología Koha