PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de Google Jackets

Data mining : the textbook / Charu C. Aggarwal

Por: Tipo de material: TextoTextoProductor: New York, NY : Distribuidor: Springer, Fecha de copyright: ©2015Edición: 1a ediciónDescripción: xxix, 734 páginas : ilustraciones, gráficas ; 25 x 19 cmTipo de contenido:
  • texto
Tipo de medio:
  • sin medio
Tipo de soporte:
  • volumen
ISBN:
  • 9783319141411
Tema(s): Clasificación LoC:
  • QA 76 .9 .D343  A26 2015
Contenidos:
An Introduction to Data Mining -- Data Preparation -- Similarity and Distances -- Association Pattern Mining -- Association Pattern Mining: Advanced Concepts -- Cluster Analysis -- Cluster Analysis: Advanced Concepts -- Outlier Analysis -- Outlier Analysis: Advanced Concepts -- Data Classification -- Data Classification: Advanced Concepts -- Mining Data Streams -- Mining Text Data -- Mining Time Series Data -- Mining Discrete Sequences -- Mining Spatial Data -- Mining Graph Data -- Mining Web Data -- Social Network Analysis -- Privacy-Preserving Data Mining
Resumen: "This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples." -- P. web editorial
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA 76 .9 .D343 A26 2015 (Navegar estantería(Abre debajo)) 1 No para préstamo Ingeniería en Datos e Inteligencia Organizacional 040444
Total de reservas: 0

Incluye bibliografía: páginas 695-726

An Introduction to Data Mining -- Data Preparation -- Similarity and Distances -- Association Pattern Mining -- Association Pattern Mining: Advanced Concepts -- Cluster Analysis -- Cluster Analysis: Advanced Concepts -- Outlier Analysis -- Outlier Analysis: Advanced Concepts -- Data Classification -- Data Classification: Advanced Concepts -- Mining Data Streams -- Mining Text Data -- Mining Time Series Data -- Mining Discrete Sequences -- Mining Spatial Data -- Mining Graph Data -- Mining Web Data -- Social Network Analysis -- Privacy-Preserving Data Mining

"This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples." -- P. web editorial

Ingeniería de Datos e Intelegiencia

NUEVOSDATOS

  • Universidad del Caribe
  • Con tecnología Koha