Data warehousing in the age of big data / Krish Krishnan.
Tipo de material: TextoEditor: Amsterdam : Distribuidor: Morgan Kaufmann is an imprint of Elsevier, Fecha de copyright: ©2013Descripción: xxiii, 346 páginas : illustraciones, figuras ; 24 x 16 cmTipo de contenido:- text.
- sin medio.
- volume.
- 9780124058910 (pbk.)
- QA 76.9.D37 K75 2013
Tipo de ítem | Biblioteca actual | Biblioteca de origen | Colección | Signatura topográfica | Copia número | Estado | Notas | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|---|---|---|
Libros para consulta en sala | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | COLECCIÓN RESERVA | QA 76.9.D37 K75 2013 (Navegar estantería(Abre debajo)) | Ejem. 1 | No para préstamo (Préstamo interno) | Ingeniería en Datos e Inteligencia Organizacional | 042952 |
Navegando Biblioteca Antonio Enriquez Savignac estanterías, Colección: COLECCIÓN RESERVA Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA 76 .9 .D37 I4575 2015 Data architecture : a primer for the data scientist : big data, data warehouse and data vault / | QA 76 .9 .D37 K53 2004 The data warehouse ETL toolkit : practical techniques for extracting, cleaning, conforming, and delivering data / | QA 76.9.D37 K55 2016 The Kimball Group reader : relentlessly practical tools for data warehousing and business intelligence / | QA 76.9.D37 K75 2013 Data warehousing in the age of big data / | QA 76 .9 .D37 L33 2011 The data warehouse mentor : practical data warehouse and business intelligence insights / | QA 76 .9 .D37 R35 2008 Building a data warehouse: with examples in SQL Server / | QA 76 .9 .D37 V132 2014 Data Warehouse Systems : design and Implementation / |
Incluye bibliografía, referencia e indice.
Machine generated contents note: Part 1 - Big Data Chapter 1 - Introduction to Big Data Chapter 2 - Complexity of Big Data Chapter 3 - Big Data Processing Architectures Chapter 4 - Big Data Technologies Chapter 5 - Big Data Business Value Part 2 - The Data Warehouse Chapter 6 - Data Warehouse Chapter 7 - Re-Engineering the Data Warehouse Chapter 8 -Workload Management in the Data Warehouse Chapter 9 - New Technology Approaches Part 3 - Extending Big Data into the Data Warehouse Chapter 10 - Integration of Big Data and Data Warehouse Chapter 11 - Data Driven Architecture Chapter 12 - Information Management and Lifecycle Chapter 13 - Big Data Analytics, Visualization and Data Scientist Chapter 14 - Implementing The "Big Data" Data Warehouse Appendix A - Customer Case Studies From Vendors Appendix B - Building The HealthCare Information Factory .
"In conclusion as you come to the end of this book, the concept of a Data Warehouse and its primary goal of serving the enterprise version of truth, and being the single platform for all the source of information will continue to remain intact and valid for many years to come. As we have discussed across many chapters and in many case studies, the limitations that existed with the infrastructures to create, manage and deploy Data Warehouses have been largely eliminated with the availability of Big Data technologies and infrastructure platforms, making the goal of the single version of truth a feasible reality. Integrating and extending Big Data into the Data Warehouse, and creating a larger decision support platform will benefit businesses for years to come. This book has touched upon governance and information lifecycle management aspects of Big Data in the larger program, however you can reuse all the current program management techniques that you follow for the Data Warehouse for this program and even implement agile approaches to integrating and managing data in the Data Warehouse. Technologies will continue to evolve in this spectrum and there will be more additions of solutions, which can be integrated if you follow the modular integration approaches to building and managing the Data Warehouse. The Appendix sections contain many more case studies and a special section on Healthcare Information Factory based on Big Data approaches. These are more guiding posts to help you align your thoughts and goals to building and integrating Big Data in your Data Warehouse"-- Provided by publisher.