PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de cubierta local
Imagen de cubierta local
Imagen de Google Jackets

Introduction to machine learning with Python : a guide for data scientists / Andreas C. Müller and Sarah Guido.

Por: Colaborador(es): Tipo de material: TextoTextoIdioma: Inglés Editor: Sebastopol, CA : Distribuidor: O'Reilly Media, Inc., Fecha de copyright: ©2016Edición: primera ediciónDescripción: xii, 384 páginas : figuras, illustraciones ; 24 x 18 cmTipo de contenido:
  • texto.
Tipo de medio:
  • sin medio.
Tipo de soporte:
  • volumen.
ISBN:
  • 9781449369415
Otro título:
  • Machine learning with Python
Tema(s): Clasificación LoC:
  • QA 76.73.P98 M85 2016
Contenidos:
Resumen: Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. -- Provided by publisher.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA 76.73.P98 M85 2016 (Navegar estantería(Abre debajo)) Ejem. 1 No para préstamo (Préstamo interno) Ingeniería Logística 042990
Libros Libros Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac Colección General QA 76.73.P98 M85 2016 (Navegar estantería(Abre debajo)) Ejem. 2 Disponible Ingeniería Logística 042991
Total de reservas: 0

Incluye index [pág. 375-384].

Introduction -- Supervised learning -- Unsupervised learning and preprocessing -- Representing data and engineering features -- Model evaluation and improvement -- Algorithm chains and pipelines -- Working with text data -- Wrapping up.

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. -- Provided by publisher.

Haga clic en una imagen para verla en el visor de imágenes

Imagen de cubierta local
  • Universidad del Caribe
  • Con tecnología Koha