Web data mining : exploring hyperlinks, contents, and usage data / Bing Liu.
Tipo de material: TextoIdioma: Inglés Series Data-centric systems and applicationsEditor: New York : Distribuidor: Springer, Fecha de copyright: ©2011Edición: segunda ediciónDescripción: xx, 622 páginas : ilustraciones, figuras, tablas ; 25 x 16 cmTipo de contenido:- texto.
- sin medio.
- volumen.
- 9783642194597
- QA 76.9.D343 L58 2011
Tipo de ítem | Biblioteca actual | Biblioteca de origen | Colección | Signatura topográfica | Copia número | Estado | Notas | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|---|---|---|
Libros para consulta en sala | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | COLECCIÓN RESERVA | QA 76.9.D343 L58 2011 (Navegar estantería(Abre debajo)) | Ejem. 1 | No para préstamo (Préstamo interno) | Ingeniería Logística | 042994 | |||
Libros | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | Colección General | QA 76.9.D343 L58 2011 (Navegar estantería(Abre debajo)) | Ejem. 2 | Disponible | Ingeniería Logística | 042995 |
Navegando Biblioteca Antonio Enriquez Savignac estanterías, Colección: COLECCIÓN RESERVA Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA 76 .9 .D343 J36 2021 Introduction to data mining and analytics with machine learning in R and Python / | QA76 .9 .D343 L185 2019 Hands-On Big Data Analytics with PySpark: Analyze large datasets and discover techniques for testing, immunizing, and parallelizing Spark jobs / | QA76 .9 .D343 L54 2015 Spatial data mining : theory and application / | QA 76.9.D343 L58 2011 Web data mining : exploring hyperlinks, contents, and usage data / | QA 76 .9 .D343 M46 2014 Big data : a revolution that will transform how we live, work, and think / | QA 76 .9 .D343 R56 2022 Data analysis with Python and PySpark / | QA 76 .9 .D343 R87 2018 Mining the social web : data minig facebook, twitter, linkedin, instagram, github, and more / |
Includes bibliographical references and index.
Data Mining Foundations -- Association Rules and Sequential Patterns -- Supervised Learning -- Unsupervised Learning -- Partially Supervised Learning -- Web Mining -- Information Retrieval and Web Search -- Link Analysis -- Web Crawling -- Structured Data Extraction: Wrapper Generation -- Information Integration -- Opinion Mining -- Web Usage Mining.
Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.