PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de cubierta local
Imagen de cubierta local
Imagen de Google Jackets

Web data mining : exploring hyperlinks, contents, and usage data / Bing Liu.

Por: Tipo de material: TextoTextoIdioma: Inglés Series Data-centric systems and applicationsEditor: New York : Distribuidor: Springer, Fecha de copyright: ©2011Edición: segunda ediciónDescripción: xx, 622 páginas : ilustraciones, figuras, tablas ; 25 x 16 cmTipo de contenido:
  • texto.
Tipo de medio:
  • sin medio.
Tipo de soporte:
  • volumen.
ISBN:
  • 9783642194597
Tema(s): Clasificación LoC:
  • QA 76.9.D343 L58 2011
Recursos en línea:
Contenidos:
Data Mining Foundations -- Association Rules and Sequential Patterns -- Supervised Learning -- Unsupervised Learning -- Partially Supervised Learning -- Web Mining -- Information Retrieval and Web Search -- Link Analysis -- Web Crawling -- Structured Data Extraction: Wrapper Generation -- Information Integration -- Opinion Mining -- Web Usage Mining.
Resumen: Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA 76.9.D343 L58 2011 (Navegar estantería(Abre debajo)) Ejem. 1 No para préstamo (Préstamo interno) Ingeniería Logística 042994
Libros Libros Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac Colección General QA 76.9.D343 L58 2011 (Navegar estantería(Abre debajo)) Ejem. 2 Disponible Ingeniería Logística 042995
Total de reservas: 0

Includes bibliographical references and index.

Data Mining Foundations -- Association Rules and Sequential Patterns -- Supervised Learning -- Unsupervised Learning -- Partially Supervised Learning -- Web Mining -- Information Retrieval and Web Search -- Link Analysis -- Web Crawling -- Structured Data Extraction: Wrapper Generation -- Information Integration -- Opinion Mining -- Web Usage Mining.

Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

Haga clic en una imagen para verla en el visor de imágenes

Imagen de cubierta local
  • Universidad del Caribe
  • Con tecnología Koha