Fundamentals of machine learning for predictive data analytics : algorithms, worked examples, and case studies / John D. Kelleher, Brian MacNamee and Aoife D'Arcy.
Tipo de material: TextoIdioma: Español Editor: Cambridge, Massachusetts : Distribuidor: The MIT Press, Fecha de copyright: ©2020Edición: Segunda ediciónDescripción: xxix, 798 páginas : illustraciones, tablas, figuras ; 25 x 20 cmTipo de contenido:- texto.
- sin medio.
- volumen.
- 9780262044691
- Q 325.5 K45 2020
Tipo de ítem | Biblioteca actual | Biblioteca de origen | Colección | Signatura topográfica | Copia número | Estado | Notas | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|---|---|---|
Libros | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | Colección General | Q 325.5 K45 2020 (Navegar estantería(Abre debajo)) | Ejem.3 | Disponible | Ingeniería Logística | 043102 | |||
Libros | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | Colección General | Q 325.5 K45 2020 (Navegar estantería(Abre debajo)) | Ejem.4 | Disponible | Ingeniería Logística | 043103 | |||
Libros para consulta en sala | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | COLECCIÓN RESERVA | Q 325.5 K45 2020 (Navegar estantería(Abre debajo)) | Ejem. 1 | No para préstamo (Préstamo interno) | Ingeniería Logística | 042999 | |||
Libros | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | Colección General | Q 325.5 K45 2020 (Navegar estantería(Abre debajo)) | Ejem. 2 | Disponible | Ingeniería Logística | 043000 |
Navegando Biblioteca Antonio Enriquez Savignac estanterías, Colección: Colección General Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
Includes bibliographical references and index.
I Introduction to Machine Learning and Data Analytics.--1 Machine Learning for Predictive Data Analytics.--2 Data to Insights to Decisions.--3 Data Exploration.--II Predictive Data Analytics.--4 Information-Based Learning.--5 Similarity-Based Learning.--6 Probability-Based Learning.--7 Error-Based Learning.--8 Deep Learning.--9 Evaluation.--III Beyond Prediction.--10 Beyond Prediction: Unsupervised Learning.--11 Beyond Prediction: Reinforcement Learning.--IV Case Studies and Conclusions.--12 Case Study: Customer Churn.--13 Case Study: Galaxy Classification.--14 The Art of Machine Learning for Predictive Data Analytics.--V Appendices.--A Descriptive Statistics and Data Visualization for Machine Learning.--B Introduction to Probability for Machine Learning.--C Differentiation Techniques for Machine Learning.--D Introduction to Linear Algebra.--Bilbiography.
Index.
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice.
Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
The book is accessible, offering nontechnical explanations of the ideas underpinning each approach before introducing mathematical models and algorithms. It is focused and deep, providing students with detailed knowledge on core concepts, giving them a solid basis for exploring the field on their own. Both early chapters and later case studies illustrate how the process of learning predictive models fits into the broader business context. The two case studies describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book can be used as a textbook at the introductory level or as a reference for professionals. Provided by publisher.