PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de Google Jackets

Machine learning for hackers / Drew Conway and John Myles White.

Por: Colaborador(es): Tipo de material: TextoTextoDetalles de publicación: Sebastopol, CA : O'Reilly Media, ©2012.Edición: 1a ediciónDescripción: xiii, 303 páginas : ilustraciones, gráficas, tablas. ; 24 x 18 centímetrosTipo de contenido:
  • texto
Tipo de medio:
  • sin medio
Tipo de soporte:
  • volumen
ISBN:
  • 9781449303716
  • 1449303714
Tema(s): Clasificación LoC:
  • QA 76 .9 .A43 C674 2012
Recursos en línea:
Contenidos:
Machine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration versus Confirmation -- What Is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Visualizing the Relationships Between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority.
Contents note continued: Priority Features of Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker -- 5. Regression: Predicting Page Views -- Introducing Regression -- The Baseline Model -- Regression Using Dummy Variables -- Linear Regression in a Nutshell -- Predicting Web Traffic -- Defining Correlation -- 6. Regularization: Text Regression -- Nonlinear Relationships Between Columns: Beyond Straight Lines -- Introducing Polynomial Regression -- Methods for Preventing Overfitting -- Preventing Overfitting with Regularization -- Text Regression -- Logistic Regression to the Rescue -- 7. Optimization: Breaking Codes -- Introduction to Optimization -- Ridge Regression -- Code Breaking as Optimization -- 8. PCA: Building a Market Index -- Unsupervised Learning -- 9. MDS: Visually Exploring US Senator Similarity.
Contents note continued: Clustering Based on Similarity -- A Brief Introduction to Distance Metrics and Multidirectional Scaling -- How Do US Senators Cluster? -- Analyzing US Senator Roll Call Data (101st--111th Congresses) -- 10. kNN: Recommendation Systems -- The k-Nearest Neighbors Algorithm -- R Package Installation Data -- 11. Analyzing Social Graphs -- Social Network Analysis -- Thinking Graphically -- Hacking Twitter Social Graph Data -- Working with the Google SocialGraph API -- Analyzing Twitter Networks -- Local Community Structure -- Visualizing the Clustered Twitter Network with Gephi -- Building Your Own "Who to Follow" Engine -- 12. Model Comparison -- SVMs: The Support Vector Machine -- Comparing Algorithms.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA 76 .9 .A43 C674 2012 (Navegar estantería(Abre debajo)) 1 No para préstamo (Préstamo interno) Ingeniería Telemática 038237
Libros Libros Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac Colección General QA 76 .9 .A43 C674 2012 (Navegar estantería(Abre debajo)) 2 Disponible Ingeniería Telemática 038238
Total de reservas: 0

"Case studies and algorithms to get you started"--En la Portada.

Incluye: referencias bibliográficas (páginas 293-294) e índice.

Machine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration versus Confirmation -- What Is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Visualizing the Relationships Between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority.

Contents note continued: Priority Features of Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker -- 5. Regression: Predicting Page Views -- Introducing Regression -- The Baseline Model -- Regression Using Dummy Variables -- Linear Regression in a Nutshell -- Predicting Web Traffic -- Defining Correlation -- 6. Regularization: Text Regression -- Nonlinear Relationships Between Columns: Beyond Straight Lines -- Introducing Polynomial Regression -- Methods for Preventing Overfitting -- Preventing Overfitting with Regularization -- Text Regression -- Logistic Regression to the Rescue -- 7. Optimization: Breaking Codes -- Introduction to Optimization -- Ridge Regression -- Code Breaking as Optimization -- 8. PCA: Building a Market Index -- Unsupervised Learning -- 9. MDS: Visually Exploring US Senator Similarity.

Contents note continued: Clustering Based on Similarity -- A Brief Introduction to Distance Metrics and Multidirectional Scaling -- How Do US Senators Cluster? -- Analyzing US Senator Roll Call Data (101st--111th Congresses) -- 10. kNN: Recommendation Systems -- The k-Nearest Neighbors Algorithm -- R Package Installation Data -- 11. Analyzing Social Graphs -- Social Network Analysis -- Thinking Graphically -- Hacking Twitter Social Graph Data -- Working with the Google SocialGraph API -- Analyzing Twitter Networks -- Local Community Structure -- Visualizing the Clustered Twitter Network with Gephi -- Building Your Own "Who to Follow" Engine -- 12. Model Comparison -- SVMs: The Support Vector Machine -- Comparing Algorithms.

PIT

NUEVOSTELEMAT

  • Universidad del Caribe
  • Con tecnología Koha